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Abstract
We present a semiclassical analysis of the high-energy eigenstates of an electron
inside a closed resonator. An asymptotic method of the construction of the
energy spectrum and eigenfunctions, localized in the small neighborhood of a
periodic orbit, is developed in the presence of a homogeneous magnetic field
and arbitrary scalar potential. The isolated periodic orbit is confined between
two interfaces which could be planar, concave or even convex. Such a system
represents a quantum electronic resonator, an analog of the well-known high-
frequency optical or acoustic resonator with eigenmodes called ‘bouncing ball
vibrations’. The first step in the asymptotic analysis involves constructing a
solitary localized asymptotic solution to the Schrödinger equation (electronic
Gaussian beam—wavepackage). Then, the stability of a closed continuous
family of periodic trajectories confined between two reflecting surfaces of the
resonator boundary was studied. The asymptotics of the eigenfunctions were
constructed as a superposition of two electronic Gaussian beams propagating
in opposite directions between two reflecting points of the periodic orbits.
The asymptotics of the energy spectrum are obtained by the generalized
Bohr–Sommerfeld quantization condition derived as a requirement for the
eigenfunction asymptotics to be periodic. For one class of periodic orbits,
localized eigenstates were computed numerically by the finite element method
using FEMLAB and proved to be in a very good agreement with those computed
semiclassically.
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1. Introduction

Historically, the first attempts to develop a semiclassical analysis for high-energy eigenstates
in the multidimensional case go back to the late 1950s when two famous papers by J B
Keller were published [1, 2]. Then, in the late 1960s and 1970s, important results for
high-energy asymptotics for elliptic boundary value problems were obtained by Babich and
Buldyrev (see [3], ‘whispering galleries and bouncing balls’ asymptotics). Simultaneously,
Maslov’s canonical operator method was developed to construct semiclassical asymptotics for
elliptic PDEs and quantum mechanics equations ([4]). A semiclassical approach to eigenstates
associated with unstable periodic orbits (PO) for ‘billiard’ problems with Helmholtz and
Schrödinger operators has been developed extensively for the last three decades. This was
the result of the study of the correspondence between classical chaotic dynamics and its
quantum analog, see for example [5]. A significant advance was recently achieved by Vergini
and coauthors [6–8] in constructing the high-energy localized asymptotic solutions of chaotic
eigenstates. These solutions are associated with unstable POs with hyperbolic structure,
the so-called resonances, which helped to explain the appearance of ‘scarring’ in chaotic
eigenstates.

Further development of the semiclassical analysis of this type of ‘billiard’ problems is
very important. It is effectively applied in various fields of modern physics such as quantum
information, nanoscience, electronic transport in semiconductors and many others. One of the
examples of the application is quantum electronic transport through the system waveguide–
resonator–waveguide (WRW). Here, resonant peaks of conductance are associated with certain
unstable POs of the resonator (see [9–11]). The case is of particular interest when families of
POs are controlled by an external magnetic field [12].

An other example is the conductance of a ‘double barrier’ structure with a potential well
similar to that described in [13]. If the perfectly reflecting interfaces of the electronic resonator
are replaced by a finite height and width potential barriers, the semiclassical asymptotic
approach may be used in this case to solve the problem of conductance.

It is of particular interest to study, in the semiclassical approximation, the role of
stable and unstable POs in electronic transport in the WRW system. This problem
has attracted much interest in recent years, mainly because of the study of quantum
interference in low-dimensional structures in nanoscience, e.g., in semiconductor quantum
wells and in thin metal overlayers. One of the examples is a study of confinement of
surface electron states in quantum resonators similar to the Fabry–Perot interferometer (see
[14, 15]). Furthermore, effective methods have been developed to compute the probability
density distribution of electrons in semiconductor heterostructures [16, 17] and the electron
surface states of metals [18–20]. The WRW system has also been studied by many physicists,
for instance, as the problem of the Fabry–Perot interferometer. Specific examples of WRW
system include an electronic waveguide with embedded resonator [21] or a coherent electron
waveguide with the resonant cavity formed between the two nanotube–electrode interfaces
[22].

In this paper, we study the problem of the construction of the high-energy eigenstates
of an electron inside a closed resonator. These states are localized near a stable PO in the
presence of a homogeneous magnetic field and arbitrary scalar potential. The isolated periodic
orbit is confined between two perfectly reflecting interfaces which could be planar, concave
or even convex. Such a system represents a quantum electronic resonator which is an analog
of the well-known high-frequency optical resonator, the so-called electromagnetic or acoustic
‘bouncing balls vibrations’. Here, we concentrate more on the semiclassical analysis of the
stability of POs and electronic eigenstates depending on the magnetic field. These results
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may be considered as the initial stage in developing a construction of resonances and ‘scar
functions’ of unstable POs in the presence of a magnetic field.

The asymptotic analysis of the high-energy localized eigenstates presented here is similar
to that used for optical resonators (see [3, 23]). As the first step in the analysis, we construct
a solitary localized asymptotic solution in a neighborhood of the classical trajectory called
an electronic Gaussian beam (wavepackage). In the second stage, we study the stability
of a closed continuous family of trajectories in the asymptotic proximity to a PO confined
between two reflecting interfaces. The stability analysis is based on the classical theory of
linear Hamiltonian systems with periodic coefficients (the monodromy matrix analysis). The
asymptotic eigenfunctions are constructed as a superposition of two modes—two electronic
Gaussian beams propagating in opposite directions between two reflecting points of the
periodic orbit. The asymptotic energy spectral series is given by the generalized Bohr–
Sommerfeld quantization condition (see [1, 3, 4]). It is obtained as a requirement of the
uniqueness and periodicity of the asymptotic eigenfunctions.

By giving a description to the general form asymptotic solution, we refer our results to a
special class of POs for a homogeneous magnetic field and a quadratic potential. The latter one
as described in Datta [24] ‘is often a good description of actual potential in many electronic
waveguides’. The key point in the asymptotic analysis is the quantization of the continuous
one-parameter family of POs. Such quantization takes place in the range of the POs stability
with respect to the parameter defining the family of POs. For one subclass of periodic orbits,
these localized eigenstates were tested against eigenvalues and eigenfunctions computed by
the finite element method using FEMLAB. In the paper, we show that, for a few chosen energy
eigenvalues and eigenfunctions, agreement between the numerical results and those computed
semiclassically is very good. An example is given which was computed by FEMLAB. It
shows the excitation of one of the localized eigenstates at the intersection of a rectangular
resonator and a waveguide. The eigenstate is excited by a waveguide electronic traveling mode
in the case of resonance. This fact demonstrates the importance of the high-energy localized
eigenstates of the electronic resonator considered in this paper.

It is worth noting that the method of asymptotical quantization we developed is similar
to the Maslov spectral semiclassical approach (complex germ method, see [25, 26]). The
Maslov complex germ method was applied to partially integrable systems such as the motion
of charged particles in external electromagnetic fields with axial symmetry. However, we
believe that the techniques our method is based on, namely, the boundary-layer asymptotic
techniques, are more straightforward and less complicated. At the same time, there is a
principal difference with respect to the asymptotic boundary-layer approach developed in
[3, 23]). In the latter case, the construction of the high-energy localized eigenstates takes place
for a single fixed stable PO independent of eigenfrequency. In our case, it is a quantization of
a family of stable and unstable POs dependent on eigenenergy.

The paper is organized as follows. First, in section 2, we give a description of the
families of PO which are being used in the application of the proposed semiclassical analysis.
In section 3, the details of the boundary-layer semiclassical method used to construct the
asymptotic solution of the Gaussian beam in the presence of a magnetic field and a scalar
potential are presented. Subsequently, in section 4, the construction of high-energy localized
eigenfunctions and PO stability analysis is discussed. Finally, in section 5, the generalized
Bohr–Sommerfeld quantization condition leads to asymptotic formulae of the high-energy
spectral series. For a few localized eigenmodes numerical tests are shown in figures for a
special class of POs in the case of a homogeneous magnetic field and a quadratic potential.

3



J. Phys. A: Math. Theor. 41 (2008) 065101 V V Zalipaev et al

X

L

B

1

1

L2

A

X

2

Figure 1. A periodic orbit inside the electronic resonator with a magnetic field and a quadratic
potential.

2. Class of POs of an electronic resonator in a magnetic field and a quadratic potential

Consider a spectral problem for the Schrödinger operator describing an electron in the presence
of a homogeneous magnetic field and arbitrary scalar potential:

1

2m

{(
p̂1 +

αx2

2

)2
+

(
p̂2 − αx1

2

)2
}

ψ + u(x)ψ = Eψ,

x = (x1, x2), p̂1 = h̄

i

∂

∂x1
, p̂2 = h̄

i

∂

∂x2
, α = eB

c
,

(1)

with the magnetic potential in axial gauge A = B/2(−x2, x1, 0). Here m, e are the mass and
charge of a particle, c is the speed of light and h̄ is the Plank constant which is a small parameter
(h̄ → 0). We study high-energy spectral problem in the semiclassical approximation in a
domain confined between two concave, convex or flat reflecting interfaces L1,2 (see figure 1).
The wavefunction satisfies Dirichlet boundary condition on the interfaces L1,2

ψ |L1,2 = 0.

In general case, if high-energy localized eigenstates are sought, which decay exponentially
away from the resonator axis AB, the separation of variables will not help construct exact
solution due to the difficulty of satisfying the boundary conditions.

Consider a class of continuous families of POs which are symmetric with respect to both
axis, with two reflection points A,B. In the case of quadratic potential u(x) = βx2

2

/
2, the

equations describing PO as solutions of the corresponding Hamilton system are easily obtained
and given by

x1 = f1(t, π1, π2) = π1

m

(
1 − ω2

�2

)
t +

π2ω

m�2
(1 − cos �t) +

π1ω
2

m�3
sin �t,

x2 = f2(t, π1, π2) = π1ω

m�2
(cos �t − 1) +

π2

m�
sin �t

(2)

for the upper part 0 < t < t0, and

x1 = D − π1

m

(
1 − ω2

�2

)
t − π2ω

m�2
(1 − cos �t) − π1ω

2

m�3
sin �t,

x2 = − π1ω

m�2
(cos �t − 1) − π2

m�
sin �t

(3)
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for the lower part t0 < s < 2t0, where D = |AB| is the width of the resonator, π1 and π2

are the values of the components of momentum p1 and p2 at the point A,ω = α/m is the
cyclotronic frequency and

� =
√

ω2 +
β

m
.

In the system of equations (2) and (3) π1 is a fixed parameter whereas π2 and t0 as functions
of π1 are determined uniquely by the equations

f1(t0, π1, π2) = D, f2(t0, π1, π2) = 0.

Thus, we have the continuous family of POs with respect to parameter π1. The classical
energy for PO is

E = 1

2m

(
π2

1 + π2
2

)
. (4)

In the limiting case β = 0, the family of POs permits transform into a family of arcs of
circle with cyclotronic radius rω of electron in a constant magnetic field

x1 = rω

[
sin

(
s

rω

− γ

)
+ sin(γ )

]
, x2 = rω

[
cos

(
s

rω

− γ

)
− cos(γ )

]
for the upper arc 0 < s < s0 (s is the arc length) and

x1 = D − rω

[
sin

(
s

rω

− γ

)
+ sin(γ )

]
, x2 = rω

[
cos(γ ) − cos

(
s

rω

− γ

)]
(5)

for the lower arc s0 < s < 2s0. Here, γ is the incidence angle of PO at the reflecting points
A,B, and measured from the axis X1. In this case, we have

rω = 1

ω

√
2E

m
, D = 2rω sin(γ ), s0 = 2γ rω,

and the total length of PO is 2s0. Thus, we have the continuous family of POs with respect to
parameter γ , and

π1 = mωD

2
cot γ, π2 = mωD

2
.

In the opposite limiting case when α = 0, the family of POs transforms into the horizontal
segment AB. This is the case where the separation of variables gives exact high-energy
localized eigenstates (see section 5) if the resonator’s interfaces are flat.

By introducing new variables σ1,2, γ1,2 and the dimensionless energy e by means of the
following formulae

σ1 = ω/ω0, β = mω2
0σ2, πi = Dω0mγi, i = 1, 2, E = D2ω2

0me,

with ω0 as the reference frequency, we obtain a dimensionless form of the problem with
the Hamiltonian (1). Now, the continuous family of POs is determined by γ1. The small
dimensionless asymptotic parameter becomes

ε = h̄

D2mω0
.

Then, we have

1

2

(
−� − iσ1

ε
x2

∂

∂x1
+

iσ1

ε
x1

∂

∂x2
+

σ 2
1

(
x2

1 + x2
2

)
4ε2

)
ψ +

σ2x
2
2

2ε2
ψ = ε−2eψ.

The classical energy for PO is

e = 1
2

(
γ 2

1 + γ 2
2

)
. (6)

Assuming that D = 1, for the case σ1 = 0.5, σ2 = 1, two types of POs are shown in
figure 2: (a) γ1 = 1, t0 = 1.093 and (b) γ1 = 1.5, t0 = 3.5228.
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Figure 2. Two types of PO.

3. Electronic Gaussian beams

Let x0 = (
x

(0)
1 (s), x

(0)
2 (s)

)
be a particle classical trajectory, where s is the arc length measured

along a trajectory. Consider the neighborhood of the trajectory in terms of local coordinates
s, n, where s is the arc length measured along the trajectory and n is the distance along vector
normal to the trajectory, such that

x = x0(s) + en(s)n,

where en(s) is the unit normal vector to the trajectory.
Following [23], we apply the asymptotic boundary-layer method to the Schrödinger

equation (1). We assume that the width of the boundary layer is determined by |n, ṅ| = O(
√

h̄)

as h̄ → 0. Introducing ν = n/
√

h̄ = O(1), we seek an asymptotic solution to (1) in the form

ψ = e
i
h̄
(S0+S1n)

√
a(s)

+∞∑
j=0

ψj(s, ν)h̄j/2,

S0(s) =
∫ (

a(s) − α

2

(
x

(0)
1 γ1 + x

(0)
2 γ2

))
ds,

S1(s) = α

2

(
x

(0)
1 γ2 − x

(0)
2 γ1

)
,

a(s) =
√

2m(E − u0(s)),

(7)

where

u(x) = u0(s) + u1(s)n + u2(s)n
2 + · · · ,

γi(s) = 〈en(s), ei〉, i = 1, 2,

where symbol 〈 , 〉 means the scalar product. Thus, for unknown ψj(s, ν) we obtain a recurrent
system

L0ψ0 = 0, L0ψ1 + L1ψ0 = 0, . . .

with differential operators L0, L1, . . . , such that the operator L0 describes the boundary-layer
Schrödinger-type equation (see the appendix)

L0ψ0 = ∂2

∂ν2
ψ0 + 2ia

∂

∂s
ψ0 − ν2a2dψ0, (8)
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where

d(s) = u2

E − u0
+

u2
1

4(E − u0)2
− u1

ρ(E − u0)
− α

ρa
,

and ρ(s) is the radius of curvature of the trajectory. The equation L0ψ0 = 0 has a solution

ψ
(0)
0 (x, E) = ei�ν2/2

√
z

, � = a
ż

z
, (9)

where ż means the derivative with respect to s (see [3, 23]). Here, � satisfies the Ricatti
equation,

�̇ +
1

a
�2 + ad = 0. (10)

The function z(s) satisfies the system of equations in variations in the Hamiltonian form

ż = p/a(s), ṗ = −a(s) d(s)z (11)

with the Hamiltonian

H(z, p) = p2

2a(s)
+

a(s) d(s)z2

2
.

The crucial point of the analysis is that it is possible to choose a solution of (11) in such a
way that Im � > 0, thus providing asymptotic localization of ψ , namely, if z(s) is a complex
solution to (11). Wronskian of Re(z(s)) and Im(z(s)) may be chosen in such a way that

a(s)W(Re(z), Im(z)) = 1
2 .

Then, the following inequality holds:

Im(�(s)) = a(s)W(Re(z), Im(z))(s)

Re(z)2 + Im(z)2
= 1

2|z(s)|2 > 0

along the trajectory. It gives the localization. We assume that there are no turning points along
the trajectory such that a(s) > 0 for all s.

Similarly (see [23, 3]), we introduce the annihilation and creation operators

�(E) = z
∂

i∂ν
− żaν, �∗(E) = z̄

∂

i∂ν
− ˙̄zaν, (12)

for which the following commutator relations hold:

[L0,�] = 0, [L0,�
∗] = 0, [�,�∗] = 1, [�,�∗m] = m�∗(m−1),

for m = 2, 3, . . . , and

�ψ
(0)
0 = 0 if L0ψ

(0)
0 = 0.

Thus, we obtain a countable set of solutions to L0ψ0 = 0 in the form

ψ
(m)
0 (x, E) = �∗m(E)ψ

(0)
0 (x, E). (13)

All these solutions are linear independent and orthogonal in the sense of the scalar product∫ +∞

−∞
ψ

(m1)
0 (s, ν)ψ̄

(m2)
0 (s, ν) dν = δm1m2m1!

√
2π

a(s)
.

The solution ψ
(m)
0 may be written as

ψ
(m)
0 (x, E) = Qm(z, ν)

ei�ν2/2

√
z(s)

,

where Qm(z, ν) are up to a constant the Hermitian polynomials with respect to ν.
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4. Construction of eigenfunctions and PO stability analysis

We assume that we deal with a continuous family of POs symmetric with respect to both
axis. The trajectory of PO consists of two symmetric parts between two reflection points A

and B (see figure 1). We seek the asymptotic solution of the eigenfunction localized in the
neighborhood of the PO as a combination of two electronic Gaussian beams

ψ(x, E) = ψ1(x, E) + Rψ2(x, E),

described by

ψ1,2(x, E) = exp

(
i

h̄

(
S0(s) + S1(s)n +

1

2

p1,2(s)

z1,2(s)
n2

))
Qm(z1,2(s), ν)√

a(s)z1,2(s)
(1 + O(h̄1/2)),

where each beam is related with the corresponding part of the periodic orbit, namely, ψ1 is
determined by z1(s), p1(s) for 0 < s < s0 and propagating along the upper part of the orbit,
whereas ψ2 is determined by z2(s), p2(s) for s0 < s < 2s0 and propagating down along
the lower part of the orbit. For the reflection coefficient R in the case of Dirichlet boundary
condition we have R = −i.

Assume that we have PO and a quasi-periodic Floquet solution of the Hamiltonian system
(11) satisfies (

z(s + 2s0)

p(s + 2s0)

)
=

(
M11 M12

M21 M22

)(
z(s)

p(s)

)
= λ

(
z(s)

p(s)

)
, (14)

where M is the monodromy matrix, mapping for a period 2s0, and λ is the Floquet multiplier.
On our way to construct asymptotics of the periodic solution ψ = ψ1 + Rψ2, first we must
determine a quasi-periodic bounded Floquet solution (z(s), p(s)) of the Hamiltonian system
(11) in the complex phase space C2

z,p. The structure of the monodromy matrix M is given by
the following product:

M = M2R
AM1R

B, det M = 1,

where M1 and M2 are fundamental matrices of the system (11) describing the evolution
(z(s), p(s)) for 0 < s < s0 and s0 < s < 2s0, correspondingly. While, RA and RB are
reflection matrices at points A and B (see figure 1). For instance, as a result of reflection at
the point B, we obtain that(

z2(s0)

p2(s0)

)
= RB

(
z1(s0)

p1(s0)

)
, RB =

(−1 0
RB

21 −1

)
, RB

21 = 2

√
2m(E − u0(B))

ρB cos γ
, (15)

where γ is the angle of incidence of the trajectory at the point B, ρB is the radius of curvature
of the reflecting interface at the point B. For RA we obtain similar result. The formulae for
RA and RB were derived by requiring the continuity condition of the phase function S of the
incident and reflected beams along the reflecting interface (see [3, 23, 27, 28]). Below, when
discussing the numerical results, we assume that the resonator’s interfaces L1,2 are flat. As a
result, we obtain

RA = RB =
(−1 0

0 −1

)
,

and M = M2M1. In general case, the entries of M1,2 are to be determined numerically as the
Hamiltonian system (11) has variable coefficients.

The classical theory of linear Hamiltonian systems with periodic coefficients states that,
if |Tr M| < 2, we have a stable PO (elliptic fixed point, for example, see [27]) and there exist

8



J. Phys. A: Math. Theor. 41 (2008) 065101 V V Zalipaev et al

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

1

1.5

2

2.5

γ1

TrM/2

Figure 3. Dependence of Tr M/2 on γ1.

two bounded Floquet’s solutions for −∞ < s < +∞, namely, (z(s), p(s)) and (z̄(s), p̄(s))

with Floquet’s multipliers λ1,2 = e± iϕ (0 < ϕ < π), which are solutions of

λ2 − Tr Mλ + 1 = 0.

We choose the solution for which the inequality W(Re(z), Im(z))(0) > 0 holds and,
consequently, we obtain the localization of the Gaussian beam along the entire PO as

Im

(
p(s)

z(s)

)
> 0, −∞ < s < +∞.

In the case |Tr M| > 2, PO is unstable (hyperbolic dynamics), and this case is not discussed
in the paper. In the case |Tr M| = 2, stability takes place if there is no adjoint vector
of the monodromy matrix M. In figure 3, we show the dependence of Tr M/2 on γ1 for
σ1 = 0.5, σ2 = 1. In this case, we observe a stability range 0.39 . . . < γ1. This depends on
the magnetic field and potential (parameters α, β).

If the potential is zero (β = 0), the entries of M1,2 are computed analytically, and we
have (see formulae (5))

M1 = M2 =
(

cos
(

s0
rω

)
rω√
2mE

sin
(

s0
rω

)
−

√
2mE
rω

cos
(

s0
rω

)
cos

(
s0
rw

)
)

.

It is important to note that in this case every PO is stable as |Tr M(γ )| < 2 for all γ

(0 < γ < π/2). In the opposite limiting case α = 0, the family of POs is the segment AB,
and the monodromy matrix is given by

M =

⎛
⎜⎜⎝

cos

(
2D

√
β

2E

)
−

√
β

2E
sin

(
2D

√
β

2E

)
√

2E
β

sin

(
2D

√
β

2E

)
cos

(
2D

√
β

2E

)
⎞
⎟⎟⎠ .
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It is clear that in this case the orbit–segment AB is always stable as |TrM| � 2. If Tr M = ±2,
then

M = ±
(

1 0
0 1

)
.

5. Quantization condition and numerical results

Below we assume that we have a range of parameter (π1 or γ1) defining stable continuous
families of POs. The requirement that the constructed asymptotic solution of the eigenfunction
ψ = ψ1 + Rψ2 is periodic with period 2s0 leads to the generalized Bohr–Sommerfeld
quantization condition determining semiclassical asymptotics of the high-energy spectral
series. Namely, after the integration around the closed loop of PO, the total variation of
the classical action S and the amplitude of ψ must be equal to 2πm1. Thus, we obtain∫ 2s0

0

√
2m(E − u(x0(s))) ds + αA = h̄(2πm1 + (m2 + 1/2)ϕ), (16)

where m1,2 ∈ Z are the longitudinal and the transversal quantization indices. The index m2

appears due to the variation of ψ
(m)
0 (x, E) (see formulae (12) and (13)). Here

A = −α

2

∫ 2s0

0

((
x

(0)
1 γ1 + x

(0)
2 γ2

))
ds

is the area encircled by the periodic orbit. If the potential u(x) = 0, the quantization condition
(16) may be simplified as follows:

2γ + sin 2γ

4 sin2 γ
= h̄

mωD2
(2πm1 + (m2 + 1/2)ϕ).

Having a continuous family of periodic orbits depending on E or π1, the quantization
condition is satisfied only for a discrete set of energy levels E = Em1,m2 . It is clear that the
quantization condition may be fulfilled only if the longitudinal index m1 is large as h̄ → 0.
At the same time, the transversal index m2 = 0, 1, 2, . . . should be of the order 1 as the larger
values of m2 would lead to the asymptotic solution ψ = ψ1 + Rψ2 not being localized. Thus,
we obtain

Em1,m2 = E(0)
m1

+ h̄E(1)
m1,m2

+ O(h̄2).

Now, the principal term E(0)
m1

is to be found from∫ 2s0

0

√
2m

(
E

(0)
m1 − u(x0(s))

)
ds + αA = 2πm1h̄.

Then, the next order term of the energy levels are obtained by applying standard perturbation
scheme

E(1)
m1,m2

= (m2 + 1/2)ϕ

�′(E(0)
m1

) ,

where

�(E) =
∫ 2s0

0

√
2m(E − u(x0(s))) ds + αA(E).

If the potential u(x) = 0, we have

�(E) = mωD2 2γ + sin 2γ

4 sin2 γ
.

10
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It is worth noting that we first perform the quantization of the parameter defining the stable
families of POs (π1 or γ1), and then we obtain the corresponding quantized values of the energy
by means of formulae (4). After the energy eigen-level was determined from the quantization
condition (16), we obtain the asymptotic expansion

ψm1,m2(x) = ψ1(x, Em1,m2) + Rψ2(x, Em1,m2),

where

ψ
(m2)
0

(
s, ν, E(0)

m1

) = (
�∗(E(0)

m1

))m2
ψ

(0)
0

(
s, ν, E(0)

m1

)
= exp

(
i

2

p1,2(s)

z1,2(s)
ν2

)
Qm2(z1,2(s), ν)√

z1,2(s)
,

whereas S0(s) and S1(s) are to be computed for Em1,m2 .
It is important to note that the high-energy spectral series of the eigenvalues and the

localized eigenfunctions for the families of stable POs may be constructed not in the first
approximation only. Higher order terms could be obtained using techniques of the perturbation
theory similar to [23].

It was mentioned before that in the case of zero magnetic field and flat reflecting interfaces
L1,2 the problem

1

2m

(
p̂2

1 + p̂2
2

)
ψ + β

x2
2

2
ψ = Eψ, ψ |L1,2 = 0 (17)

is exactly solvable by the separation of variables. Thus, we obtain the following solution for
the eigenfunctions:

ψm1,m2 = const sin
(p1x1

h̄

)
�m2(x2), (18)

where

�m2(x2) =
(√

mβ

πh̄

)1/4

exp

(
−

√
mβ

2h̄
x2

2

)
Hm2

⎛
⎝

√√
mβ

h̄
x2

⎞
⎠ ,

and the energy eigen-levels are

Em1,m2 = p2
1

2m
+ h̄

√
β

m
(m2 + 1/2), p1 = πm1h̄

D
, (19)

where Hm2(x) are the Hermitian polynomials of the order m2.
In the asymptotic approximation m1h̄ = O(1),m2 = O(1) as h̄ → 0, our semiclassical

approach in the limit α = 0 for the eigenfunction asymptotics gives the same formula (18)
with the only difference for

p1 =
√

2mE − h̄

√
β

2E

(
m2 +

1

2

)
, (20)

where the energy satisfies the quantization condition

√
2mE = h̄

(
πm1

D
+

√
β

2E

(
m2 +

1

2

))
. (21)

From equations (20), (21) to the leading order we obtain that

p1 = πm1h̄

D
.

Taking into account this result, from (21) we find that the energy eigen-levels are given by
formulae (19).
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Figure 4. Electronic eigenfunction density |ψ |2 for the state m1 = 3,m2 = 0 computed by
semiclassical analysis for e = 0.533 (a) and by FEMLAB for e = 0.506 (b).
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Figure 5. Electronic eigenfunction density |ψ |2 for the state m1 = 3,m2 = 1 computed by
semiclassical analysis for e = 0.634 (a) and by FEMLAB for e = 0.607 (b).

For the subclass of POs considered in the paper with σ1 = 0.5, σ2 = 1, ε = 0.1,
and the flat resonator’s interfaces L1,2, the high-energy localized eigenstates were tested
against the eigenvalues and the eigenfunctions computed by the finite element method using
FEMLAB. In figures 4–6, it is shown that for the states m1 = 3,m2 = 0, 1, 2 the agreement
between the numerical results for the energy eigen-levels and eigenfunction density |ψ |2
and those computed semiclassically is very good. In figure 7, we plotted the eigenfunction
density |ψ |2 computed semiclassically for the states m1 = 13,m2 = 0, 1 in the case of
σ1 = 0.5, σ2 = 1, ε = 0.02 and flat interfaces.

In figure 8, an example is shown which was computed by FEMLAB. It shows the excitation
of the high-energy localized eigenstate m1 = 3,m2 = 2 mentioned above (see figure 6)
with σ1 = 0.5, σ2 = 1, ε = 0.1 in the intersection of the rectangular resonator and the
horizontal waveguide. Dirichlet boundary condition was imposed along the boundary of the
WRW system except for the radiation conditions on the left and right ends of the waveguide.
The fact that the eigenstate is excited by waveguide electronic traveling mode in the case

12
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Figure 6. Electronic eigenfunction density |ψ |2 for the state m1 = 3,m2 = 2 computed by
semiclassical analysis for e = 0.728 (a) and by FEMLAB for e = 0.709 (b).
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Figure 7. Electronic eigenfunction density |ψ |2 computed by semiclassical analysis for the state
m1 = 13,m2 = 0 with ε = 0.381 (a) and m1 = 13, m2 = 1 with e = 0.4024 (b), ε = 0.02.

Figure 8. The excitation of the state m1 = 3,m2 = 2 in the resonator by traveling resonance
mode inside waveguide.
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of resonance demonstrates the importance of the high-energy localized eigenstates of the
electronic resonator considered in the paper.

The semiclassical analysis of the high-energy localized spectral series for the PO shown
in figure 2(b) and POs with more complicated structure will be considered in the future
publications.

6. Conclusion

For the electronic resonator in a magnetic and arbitrary electric field the semiclassical
approximation was applied to construct the asymptotic spectral series of high-energy eigen-
levels. Corresponding eigenfunctions are localized in the neighborhood of classical stable
periodic orbits similar to ‘bouncing balls’ high-frequency vibrations of optical or acoustic
resonators. Their asymptotic expansions are obtained as superposition of Gaussian beams
(Gaussian wavepackages), incident and reflected between the resonator interfaces. The
asymptotics of the energy spectral series are derived from the quantization condition of the
generalized Bohr–Sommerfeld type. For one class of periodic orbits localized eigenstates were
computed numerically by the finite element method using FEMLAB and proved to be in a very
good agreement with those computed semiclassically. To illustrate the behavior of localized
eigenfunctions of the electronic resonator a couple of portraits of densities of the electron
eigenfunctions was plotted for two high-energy eigenvalues determined by the quantization
condition. An example was shown, which was computed by FEMLAB, demonstrating that
these high-energy eigenstates could be excited at the intersections of a waveguide and a
resonator. We hope that the current model of high-energy localized eigenstates of the electronic
resonator could be generalized to study corresponding transport problems of 2D electronic gas
in the system waveguide–resonator–waveguide, and it may be developed for the resonances
of unstable periodic orbits of electronic resonators in the presence of a magnetic field.
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Appendix

In the appendix, the basic steps of derivation of the boundary-layer Schrödinger-type
equation (8) are outlined. The initial Schrödinger equation (1) may be written in the form

�ψ + iαh̄−1
(
x2ψx1 − x1ψx2

)
+ h̄−2

(
2m(E − u(x)) − α2

4

(
x2

1 + x2
2

))
ψ = 0.

Using the local coordinates s, n, related with the fixed trajectory x
(0)
1 (s), x

(0)
2 (s), we have

x1 = x
(0)
1 (s) + nγ1(s), x2 = x

(0)
2 (s) + nγ2(s),

ψx1 =
(

1 − n

ρ

)−1 (
ψsγ2 + ψnγ1

(
1 − n

ρ

))
,

ψx2 =
(

1 − n

ρ

)−1 (
ψnγ2

(
1 − n

ρ

)
− ψsγ1

)
,

2m(E − u(x)) = a2(s) + a1n + a2n
2 + · · · , a1 = −2mu1, a2 = −2mu2.
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The Schrödinger equation in terms of s, n coordinates becomes(
1 − n

ρ

)−1
∂

∂n

( (
1 − n

ρ

)
ψn

)
+

(
1 − n

ρ

)−1
∂

∂s

((
1 − n

ρ

)−1

ψs

)

+
iαh̄−1

1 − n
ρ

((
x

(0)
2 + nγ2

) (
ψsγ2 + ψnγ1

(
1 − n

ρ

))

− (
x

(0)
1 + nγ1(s)

) (
ψnγ2

(
1 − n

ρ

)
− ψsγ1

) )

+ h̄−2

(
a2(s) + a1n + a2n

2 − α2

4

((
x

(0)
1 + nγ1(s)

)2
+

(
x

(0)
2 + nγ2(s)

)2))
ψ + · · · = 0.

The width of the boundary layer is determined by |n, ṅ| = O(
√

h̄) as h̄ → 0. Here
and below in the Schrödinger equation we neglect the terms of the order higher than h̄−1.
Introducing

ψ = exp
( i

h̄
(S0(s) + S1(s)n)

)
(U(s, n) + O(h̄1/2)),

we obtain

−i
h̄−1

ρ
S1U + Unn +

(
1 − n

ρ

) (−h̄−2S2
1U + 2ih̄−1S1Un +

(
1 +

n

ρ
+

n2

ρ2

)
× (−h̄−2(Ṡ0 + Ṡ1n)2U + ih̄−1(S̈0 + S̈1n)U + 2ih̄−1(Ṡ0 + Ṡ1n)Us

)
+ iαh̄−1

(
x

(0)
2 + nγ2

)
×

(
Usγ2 + Unγ1

(
1 − n

ρ

)
+ ih̄−1γ2(Ṡ0 + Ṡ1n)U + ih̄−1γ1S1U

(
1 − n

ρ

))

− iαh̄−1
(
x

(0)
1 + nγ1

) (
γ2(Un + ih̄−1S1U)

(
1 − n

ρ

)
− γ1(ih̄

−1(Ṡ0 + Ṡ1n)U + Us)

)

+ h̄−2U

(
1 − n

ρ

)(
a2(s) + a1n + a2n

2 − α2

4

((
x

(0)
1

)2
+

(
x

(0)
2

)2

+ 2n
(
x

(0)
1 γ1 + x

(0)
2 γ2

)
+ n2

(
γ 2

1 + γ 2
2

)))
+ · · · = 0.

Retaining the terms of the order h̄−2, we obtain their zero contribution(
−S2

1 − Ṡ2
0 + iαx

(0)
2 (iγ2Ṡ0 + iγ1S1) − iαx

(0)
1 (iγ2S1 − iγ1Ṡ0)

+ a2 − α2

4

((
x

(0)
1

)2
+

(
x

(0)
2

)2))
U = 0,

as

Ṡ0(s) = a(s) − α

2

(
x

(0)
1 γ1 + x

(0)
2 γ2

)
,

S1(s) = α

2

(
x

(0)
1 γ2 − x

(0)
2 γ1

)
.

Equating to zero all the terms of the order h̄−3/2 and taking into account that

Ṡ1 = α

2

(
1 +

x
(0)
1 γ1 + x

(0)
2 γ2

ρ

)
,

we obtain

a1 − 2αa − 2

ρ
a2 = 0. (A.1)
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The reason why this equation takes place must be clarified as follows. Classical trajectory of
the particle with Hamiltonian

H = 1

2m

{ (
p1 +

αx2

2

)2
+

(
p2 − αx1

2

)2
}

+ u(x)

is described as an extremal solution of the action functional

S =
∫ √

2m(E − u(x)) dσ +
α

2

∫
(−x2ẋ1 + ẋ2x1) dσ.

In terms of the local coordinates s, n, related with the fixed trajectory x
(0)
1 (s), x

(0)
2 (s), the

action may be written as follows:

S =
∫

L(s, n, ṅ) ds,

where

dσ =
√(

1 − n(s)

ρ(s)

)2

+ ṅ2 ds.

The integrand L(s, n, ṅ) is the corresponding Lagrangian, where the symbol ṅ means a
derivative of the extremal solution n(s) with respect to s. Taking into account only
asymptotically close trajectories |n(s), ṅ(s)| 	 1 and using

u(x(s)) = u0(s) + u1(s)n(s) + u2(s)n(s)2 + · · · ,
we may approximate the Lagrangian up to quadratic terms L2(s, n, ṅ). The expression of
L2(s, n, ṅ) contains linear terms with respect to n and ṅ with coefficients depending on s. The
corresponding Euler–Lagrange equation

d

ds

(
∂L2

∂ṅ

)
= ∂L2

∂n
(A.2)

is homogeneous and given by

n̈ + ṅ
ȧ

a
+ nd(s) = 0, (A.3)

if the following relation holds true:

α +
a

ρ
+

au1

2(E − u0)
= 0,

which is identical to (A.1). Equation (A.3) is being homogeneous means that n(s) = 0 must
be a solution of (A.2) as well. Equation (A.3) is equivalent to the Hamiltonian system (11).

Finally, equating to zero all the terms of the order h̄−1 taking into account that

S̈0 = ȧ(s) +
1

ρ
S1

and introducing ν = n/
√

h̄ = O(1), we obtain

Uνν + 2iaUs + iȧ(s)U + ν2a2U

(
a2

a2
− a1

2ρa2
− 1

ρ2
− a2

1

4a4

)
= 0.

The substitute

U = ψ0(s, ν)√
a(s)

leads to equation (8).
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